CAT HEATING
OVERHEAD CONTACT SYSTEM DE-ICING – SYSTEM BLUE WIRE

- Prevent ice & frost accumulation on contact wire
 Efficient electrical heating of the contact wire to bring the temperature above freezing point.
- Reduce mechanical stresses on the contact wire
 No need for mechanical removal of ice.
- Quick and easy installation
 Flexible silicone rubber sheath, light weight and triangle shape makes installation easy.
- High heating efficiency
 The triangle shape always insure maximum surface contact with the contact wire.
- Superior performance
 Assured by use of UV stable, silicone rubber, heat transfer jacket.
- State-of-the-art control systems
 Energy saving control of the heat based on air temperature, wire temperature, humidity, dew-point and/or weather forecast.
- Monitoring and control
 Wireless monitoring of the entire installation.

Eliminate Costly Interruptions of Revenue Service due to the effect of cold and ice/frost accumulation on the tramline/trolley/contact wire.

Ice on the contact wire causes tramlines and light rails to lose power and in extreme cases leads to the contact wire / catenary system being brought down. Arcing caused by the presence of ice leads to excessive wear to the pantograph conductors, all leading to traffic delays and service disruption.

Mechanical removal of ice is manpower and time consuming and mechanically stresses the contact wire.

SAN Railway Systems offers the System BLUE WIRE solution that prevents accumulation of ice and frost on the contact wire.

The system contains everything from weather detection, weather forecast, heating wire, mounting clips, controllers and supervision software.
Along the line there are typical places more exposed than others regarding ice problems on the contact wire. Here is a list of typical places.

In and out of tunnels
The air inside the tunnel maintains a constant temperature and humidity. Traffic in and out and the natural ventilation forces the high humidity air to meet the cold environment outside the tunnel. Ice will be created as rime on the contact wire. Water from the ceiling dripping down on the contact wire will create glaze.

On bridges crossing rivers
The air above the river is normally warmer and the moisture content higher. On the bridge the warmer humid air meets the cold contact wire. Both hoarfrost and rime will accumulate on the wire.

Lines along big lakes and rivers
Same problems as for bridges crossing rivers.

Passing under bridges
Water dripping down from the bridge ceiling hits the cold contact wire, resulting in glaze ice.

Up hill elevated lines
The temperature normally decreases at higher altitude. This means that along the elevated line we will see a big temperature difference. The risk of having rime conditions somewhere along the line is much bigger. Ice on the contact wire reduces the power when the vehicle needs it the most.

Yards
Ice on the contact wire very often accumulates during the night. The vehicles cannot move due to ice accumulation causing revenue service interruptions.
SAN Railway Systems and RTR Technologies offer a complete solution, based on heating the contact wire to prevent new ice from building up and existing ice to melt.

The heating cable is powered from the contact wire. To control the power and run the system using the minimum energy, a number of controllers are needed.

Every controller is capable of controlling multiple heating circuits. Standard heating circuit are either 150 or 300 meter long.

Every controller installation also includes a manual disconnector to disconnect the controller and the heating circuits from power. This disconnector is normally mounted above the controller.

The heating element is a triangular cable mounted with springs on top of the contact wire. The system provides sufficient heat to raise the temperature app. 10°C over ambient temperature @ 9 m/sec. wind speed.

CONTROLLER

Every controller can operate as a stand alone controller. The power for the heating cable is managed based on multiple historical metrological measurements and instant measurements.

- Air temperature (Standard)
- Cold contact wire temperature (Optional)
- Air humidity (Optional)

The controller can, at any time, be switched to "Manual ON/OFF" either remotely or by operating a switch. A lamp for every circuit indicates heating status.

The system measure that every circuit is actually heating. If a failure is detected, this is reported and visibly indicated on the controller.

Advanced self diagnostic tools and multiple fail safe modes are integrated part of the controller.

REMOTE CONTROL

To maintain and manage a complete heating system covering a large geographical area, remote control is highly recommended.

Every controller has multiple communication options. From wired RS485 or Ethernet to wire less GSM with GPRS communication technology.

SAN Railway Systems offers an easy to use hosted SCADA solution that provides the users with all information and remote control facilities. The solution is based on GPRS and the user only need access to the internet.

All controllers can be made, to interface with an existing SCADA system.
The heating system, which is patent pending, consists of an insulated constant wattage heater surrounded by a heat transfer material. The power output is controlled by a microprocessor based system.

Lead wires: The heating elements consist of multiple twisted metal alloy wires.

Heater strip
Insulation: Consist of an electrical insulating cross-linked extruded fluoro-polymer outer jacket.

Heater Jacket:

Heat transfer aid: The outer material is a silicon rubber loaded with heat transfer materials yielding a highly heat conductive electrically non conductive compound.

Infra Red picture of a heating cable on top of the contact wire. The series of pictures shows how fast the wire is heated.

The 3 clips mounting the heating cable are visible on all pictures.

This series of pictures was taken at -5°C, wind speed 2-3 m/sec, 78% RH, Power 28 W/m.

After just 5 minutes the contact wire is above freezing temperature and ready to melt ice.

1: 1 minutes
2: 5 minutes.
3: 10 minutes
4: 15 minutes

This series of pictures was taken at -5°C, wind speed 2-3 m/sec, 78% RH, Power 28 W/m.

After just 5 minutes the contact wire is above freezing temperature and ready to melt ice.

1: 1 minutes
2: 5 minutes.
3: 10 minutes
4: 15 minutes
CABLE SPECIFICATIONS

Heating Cable specification is shown for a typical 750 VDC installation. Supply voltage from 500 to 1500 VDC can be supplied (3000 VDC under construction).

Heating Cable

<table>
<thead>
<tr>
<th>Dimension: Triangle</th>
<th>6.5 x 6.5 x 6.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Serial constant wattage cable</td>
</tr>
<tr>
<td>Cable type:</td>
<td>RTR#201051</td>
</tr>
<tr>
<td>length:</td>
<td>152 m +/− 10%</td>
</tr>
<tr>
<td>Ohm per m:</td>
<td>0.82 ohm / meter</td>
</tr>
<tr>
<td>Cable type:</td>
<td>RTR#201079</td>
</tr>
<tr>
<td>length:</td>
<td>304 m +/− 10%</td>
</tr>
<tr>
<td>Ohm per m:</td>
<td>0.20 ohm / meter</td>
</tr>
<tr>
<td>Power output: Min.</td>
<td>26.2 W/m</td>
</tr>
<tr>
<td>Nom.</td>
<td>30.0 W/m</td>
</tr>
<tr>
<td>Max.</td>
<td>33.8 W/m</td>
</tr>
</tbody>
</table>

Typical Heating capabilities:

- Raise the temperature 10°C @ 9 m/sec. wind speed
- Supply voltage: Nom. 750 VDC
- Insulation mat.: Silicon rubber base loaded with heat transfer materials.
- Insulation test: Acc. to ASTM D3032
- Insulation resis.: min. 3000 Mohm/m
- Weathering test: Acc. to ANSI/ASTM D2565-76
- Lead pull: 18 kg vertical in 10 min. without deformation.
- Max sheath temp.: 120°C

CONTROLLER SPECIFICATIONS

Controller can be customized to meet any demand, software, control and enclosure wise.

Standard Controller:

Dimension:	300 x 600 x 220 mm
Weight:	8.5 kg
Power output:	Up to 4 heating circuits
Fuse output:	Individual fuse for every circuit
Supply voltage:	Nom. 750 VDC
Supply voltage:	Max. 900 VDC
Supply fuse:	Fuse for mains supply
Input:	Air temperature: -50 to +50 gr. C
Type:	Pt1000
Humidity:	RH 5 – 98%
Contact wire temperature:	Pt1000
Current measurement:	Yes, one per heating circuit
Measurement type:	Hall element
Communication:	Ethernet TCP/IP
	Wireless GSM, GPRS
	Wireless GSM-R, GPRS

RTU – INTELLIGENT CONTROLLER

The Intelligent RTU unit stands up to the harshest environments. The specially developed, proprietary alloy enclosure provides noise immunity, wide temperature range, impact/vibration resistance, and DIN-rail mounting without special tools.

The RTU is pre-programmed to control all communication and input/output for the CAT heating system.

Alarm handling:	Smart alarm management with embedded calendar
Battery back-up:	Intelligent battery charger
Ambient temperature storage:	-40°C to +80°C
Ambient temperature operation:	-10°C to +50°C
Humidity:	5-95% non condensing
Approvals:	CE, UL/CSA
EMC:	EN61326-1
EMI emissions:	EN61000-4-2,3,4,6
MTBF	>400.000 hours
BLUE WIRE – SCADA SUPERVISION SOFTWARE

BLUE WIRE SCADA is the scalable software package that extend the reliability and efficiency of the contact wire heating. On-line management and control software to bond all controllers on a tram line or in a territory together. Valuable information at the fingertip of:

- Traffic Control Department.
- Maintenance Department.
- Technical Department.

Errors and operational status is reported immediately to the right person, both at the user interface, in a SMS and/or in an e-mail. Call for repair could be done with no delays. No jeopardizing the regularity of the tramline traffic.

The SCADA software can be customized in multiple way e.g. Language, graphical presentation and error handling.

Operational status:
- Manual or Auto operation
- Control mode
- Locale weather conditions
- Heating circuits ON or OFF
- Energy counters
- Total heating hours
- Heating circuit power
- Current measurement for each heating circuit

Instant message on errors:
- Communication error
- Mains supply failure
- Low or no current in heating circuit
- Temperature sensor failure
- Humidity sensor failure

Remote settings:
- Turn individual circuits ON/OFF
- Temperature & Humidity levels for every control mode
- Diagnostic tool

Screen shot of the BLUE WIRE SCADA software package. Shown is a graphical presentation of a full tramline that includes 6 controllers and 13 heating circuits. If everything is green or yellow, no failure or errors to report.

Screen shot of the diagnostic tool “BLUE WIRE Service Access” for technicians and engineers. Features also remote download of new firmware for each controller when upgrades or changes has to be implemented.
SCADA AS A HOSTED SOLUTION

Complete SCADA solution on the Internet

SAN Railway Systems offers an easy to use hosted SCADA solution that provides the users with on-line information and remote control facilities. The solution is based on wireless GSM (GSM-R) using GPRS communication technology. The user only need access to the internet.

Safety solution: The solution is provided in a secure GPRS environment and the user is connected via a secure Citrix terminal solution. Minimal risk of hackers or virus.

Hosted BLUE WIRE SCADA benefits:
- No need for any IT hardware investments
- No need for maintaining a server application and the communication gateways
- SAN Railway Systems maintain the IT solution
- SAN Railway Systems can update, modify and implement changes very quickly.
- SAN Railways Systems has the experience from other similar hosted installations

BLUE WIRE SCADA – SERVER SOLUTION

SAN Railway Systems offers the same easy to use SCADA solution to be installed on your own server in your own secure data network.

If a secure GPRS network is already in place and/or the communication is based on a wired network (ethernet or fibre optic cables) or GSM-R, it make sence to host the solution in In-house.
Ice accretion can be categorized in 4 different main types of ice:

- **Hoarfrost**
- **Rime**
- **Glaze / Ice rain**
- **Snow**

Hoarfrost Air humidity freeze on surfaces directly from the vapour phase if the contact wire is colder than the air temperature and below 0°C.

Rime Air humidity condensate on the contact wire when the air temperature is below the dew point temperature. The condensate will freeze if the contact wire is below freezing point.

Glaze / Ice rain Water droplets hits a contact wire colder than 0°C and freezes. Water droplets could be super cooled rain.

Snow Normally snow will not create ice on the contact wire, but wet snow (snow just around the freezing temperature) will react just like water droplets and will freeze to ice on a contact wire colder than 0°C.